(3x^4-12x^2-16)/x^2

Simple and best practice solution for (3x^4-12x^2-16)/x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^4-12x^2-16)/x^2 equation:


D( x )

x^2 = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

(3*x^4-(12*x^2)-16)/(x^2) = 0

(3*x^4-12*x^2-16)/(x^2) = 0

(3*x^4-(12*x^2)-16)/(x^2) = 0 // * x^2

3*x^4-(12*x^2)-16 = 0

3*x^4-12*x^2-16 = 0

t_1 = x^2

3*t_1^2-12*t_1^1-16 = 0

3*t_1^2-12*t_1-16 = 0

DELTA = (-12)^2-(-16*3*4)

DELTA = 336

DELTA > 0

t_1 = (336^(1/2)+12)/(2*3) or t_1 = (12-336^(1/2))/(2*3)

t_1 = (4*21^(1/2)+12)/6 or t_1 = (12-4*21^(1/2))/6

t_1 = (12-4*21^(1/2))/6

x^2-((12-4*21^(1/2))/6) = 0

1*x^2 = (12-4*21^(1/2))/6 // : 1

x^2 = (12-4*21^(1/2))/6

t_1 = (4*21^(1/2)+12)/6

x^2-((4*21^(1/2)+12)/6) = 0

1*x^2 = (4*21^(1/2)+12)/6 // : 1

x^2 = (4*21^(1/2)+12)/6

x^2 = (4*21^(1/2)+12)/6 // ^ 1/2

abs(x) = ((4*21^(1/2)+12)^(1/2))/(6^(1/2))

x = ((4*21^(1/2)+12)^(1/2))/(6^(1/2)) or x = -(((4*21^(1/2)+12)^(1/2))/(6^(1/2)))

x in { ((4*21^(1/2)+12)^(1/2))/(6^(1/2)), -(((4*21^(1/2)+12)^(1/2))/(6^(1/2))) }

See similar equations:

| (3x-3)/(4x-4) | | (3x-3)/4x-4 | | (3c/2y^2)^4 | | 11b^2-25b-96=0 | | 2(y-3)=2y-6 | | 7x+3y=mforwhy | | 2x-4=32-10x | | 12(13x+14)= | | 9+3k=30 | | -5x/3-2/3=2 | | 5x+4x=54 | | 6n=30+3n+12 | | -5x/3-2/3 | | 16y^2-81=0 | | 5/6t-8=10 | | 9n-10=80 | | 3y+14=2y-6 | | 2y+4x=38 | | 2/9x-4=2/3 | | 4(n+6)=2(n+4) | | 2x-9=4-6x | | 8(-2+x)=40 | | 8(-2+1)=40 | | 27^4x-5=1/3 | | x^2-9y^5=lny | | 9y+15-9y=15 | | 16a^2-56+49= | | 50x^2+7.5x+1=0 | | -3b+4a=-4 | | 6(t-5)+6t=6(2t+3)-10 | | 5(x+6)+3(x-8)=46 | | 5(x+3)+3(x-8)=46 |

Equations solver categories